Fork-Join and Data-Driven Execution Models on Multi-Core Architectures: Case study of the FMM

Abdelhalim Amer¹ Naoya Maruyama² Miguel Pericàs¹ Kenjiro Taura³ Rio Yokota⁴ Satoshi Matsuoka¹

¹Tokyo Institute of Technology, Tokyo, Japan

²RIKEN, Kobe, Japan

³The University of Tokyo, Tokyo, Japan

⁴KAUST. Saudi Arabia

ISC'13, Leipzig, Germany

- Introduction
 - The Fork- Join Model
 - The Data-Driven Model
 - Trade-Off: Data locality vs. idle times
 - The Fast Multipole Method (FMM)
- FMM Implementations
 - Fork-Join FMM
 - Data-Driven FMM
- Performance Evaluation and Analysis
 - Test-bed Configuration
 - The Fork-Join FMM bottlenecks at scale
 - Comparative Analysis
 - Memory-intensive Kernel Analysis
- Conclusion and Future Work

- Introduction
 - The Fork-Join Model
 - The Data-Driven Model
 - Trade-Off: Data locality vs. idle times
 - The Fast Multipole Method (FMM)
- FMM Implementations
 - Fork-Join FMM
 - Data-Driven FMM
- Performance Evaluation and Analysis
 - Test-bed Configuration
 - The Fork-Join FMM bottlenecks at scale
 - Comparative Analysis
 - Memory-intensive Kernel Analysis
- Conclusion and Future Work

Introduction

Programming parallel machines is complex

- Extract parallelism; while
- Minimizing data movements

Execution models:

- Fork-Join (Bulk-Synchronous): promotes data locality and tolerates idle times
- Data-Driven (Asynchronous): keeps processors busy to the detriment of data locality
- ⇒Trade-off: data locality vs. minimizing idle times

Proposition

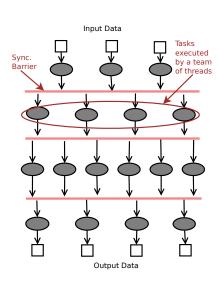
Study this trade-off on Multi-Cores + the Fast Multipole Method (FMM)

TOKYO TECH

- Introduction
 - The Fork-Join Model
 - The Data-Driven Model
 - Trade-Off: Data locality vs. idle times
 - The Fast Multipole Method (FMM)
- FMM Implementations
 - Fork-Join FMM
 - Data-Driven FMM
- Performance Evaluation and Analysis
 - Test-bed Configuration
 - The Fork-Join FMM bottlenecks at scale
 - Comparative Analysis
 - Memory-intensive Kernel Analysis
- Conclusion and Future Work

The Fork-Join Model

- Execution = multiple steps synchronized by global barriers
- Each step is executed in parallel
- A step may work on a subset of data → Possibility to exploit data locality
- We do not consider nested fork-join



TOKYO TECH Pursuing Excellence

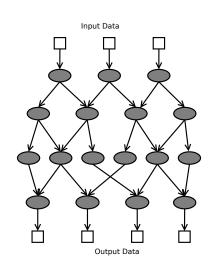
Outline

Introduction

- The Fork-Join Model
- The Data-Driven Model
- Trade-Off: Data locality vs. idle times
- The Fast Multipole Method (FMM)
- FMM Implementations
 - Fork-Join FMM
 - Data-Driven FMM
- Performance Evaluation and Analysis
 - Test-bed Configuration
 - The Fork-Join FMM bottlenecks at scale
 - Comparative Analysis
 - Memory-intensive Kernel Analysis
- Conclusion and Future Work

The Data-Driven Model

- Breaks global synchronizations into fine-grain local synchronizations
- Runtimes and schedulers extract parallelism and minimize idle times
- Difficult to express locality and possible loss in cache performance



TOKYO TECH Pursuing Excellence

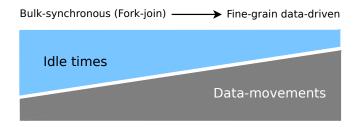
Outline

Introduction

- The Fork-Join Model
- The Data-Driven Model
- Trade-Off: Data locality vs. idle times
- The Fast Multipole Method (FMM)
- FMM Implementations
 - Fork-Join FMM
 - Data-Driven FMM
- Performance Evaluation and Analysis
 - Test-bed Configuration
 - The Fork-Join FMM bottlenecks at scale
 - Comparative Analysis
 - Memory-intensive Kernel Analysis
- Conclusion and Future Work

Data locality vs. Idle times trade-off

Parallel execution models exhibit a trade-off between data-locality and computational units idle times:



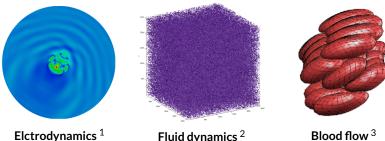
⇒ We study the extreme cases: **Bulk-Synchronous** vs. **Fine-grain** data-driven methods

Introduction

- The Fork-Join Model
- The Data-Driven Model
- Trade-Off: Data locality vs. idle times
- The Fast Multipole Method (FMM)
- FMM Implementations
 - Fork-Join FMM
 - Data-Driven FMM
- Performance Evaluation and Analysis
 - Test-bed Configuration
 - The Fork-Join FMM bottlenecks at scale
 - Comparative Analysis
 - Memory-intensive Kernel Analysis
- Conclusion and Future Work

The Fast Multipole Method

- \triangleright Solves n-body problems with O(N) complexity
- Used in many scientific simulations:



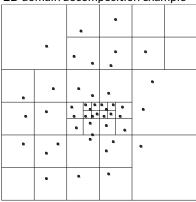
¹ S. Chaillat, M. Bonnet, J.F. Semblat: A multi-level fast multipole bem for 3-d elastodynamics in the frequency domain. Computer Methods in Applied Mechanics and Engineering 197 (2008)

 $²_{R.\ Yokota.\ T.\ Narumi,\ L.A.\ Barba,\ K.\ Yasuoka:\ Petascale\ turbulence\ simulation\ using\ a\ highly\ parallel\ fast\ multipole}$ method. (2011)

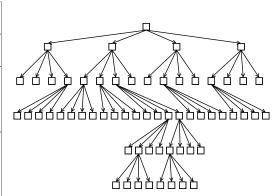
A. Rahimian. I. Lashuk, S. Veerapaneni, A. Chandramowlishwaran, D. Malhotra, L. Moon, R. Sampath, A. Shringarpure, J. Vetter, R. Vuduc, D. Zorin, and G. Biros, Petascale Direct Numerical Simulation of Blood Flow on 200K Cores and Heterogeneous Architectures, SC 2010

Basics of FMMs: Domain decomposition

2D domain decomposition example



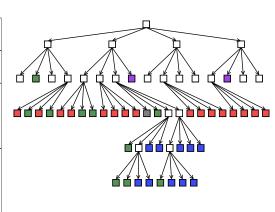
Corresponding quad-tree



Basics of FMMs: Interaction lists

Interaction lists for a target box B in a quad-tree 1

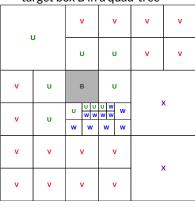
tai get box bill a quad ti ee							
U		v	v	v	v		
		U	U	v	v		
v	U	В	U	×			
v	U		w w				
v	v	v	v		v		
v	v	V	v	v			



 $^{^{1}}$ A. Chandramowlishwaran, S. Williams, L. Oliker, I. Lashuk, G. Biros, R. Vuduc: Optimizing and tuning the fast multipole method for state-of-the-art multicore architectures", IPDPS (2010)

Basics of FMMs: Interaction lists

Interaction lists for a target box B in a quad-tree¹



Near field direct evaluation

U-list: Compute intensive

2. Far field approximation

- Upward: Parent-children dependencies
- V-list: Memory intensive
- X and W-lists: High workload variation
- Downward: Parent-children dependencies

 $^{^{1}}$ A. Chandramowlishwaran, S. Williams, L. Oliker, I. Lashuk, G. Biros, R. Vuduc: Optimizing and tuning the fast multipole method for state-of-the-art multicore architectures", IPDPS (2010)

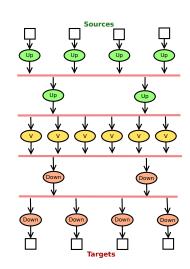
TOKYO TECH

- Introduction
 - The Fork-Join Model
 - The Data-Driven Model
 - Trade-Off: Data locality vs. idle times
 - The Fast Multipole Method (FMM)
- FMM Implementations
 - Fork-Join FMM
 - Data-Driven FMM
- Performance Evaluation and Analysis
 - Test-bed Configuration
 - The Fork-Join FMM bottlenecks at scale
 - Comparative Analysis
 - Memory-intensive Kernel Analysis
- Conclusion and Future Work

- Introduction
 - The Fork-Join Model
 - The Data-Driven Model
 - Trade-Off: Data locality vs. idle times
 - The Fast Multipole Method (FMM)
- FMM Implementations
 - Fork-Join FMM
 - Data-Driven FMM
- Performance Evaluation and Analysis
 - Test-bed Configuration
 - The Fork-Join FMM bottlenecks at scale
 - Comparative Analysis
 - Memory-intensive Kernel Analysis
- Conclusion and Future Work

Fork-Join implementation of the FMM¹

- Each step implemented with OpenMP work-sharing constructs
- Upward and Downward: level-by-level synchronization barriers
- U-list and V-list: manual partitioning for improved load-balancing
- X and W-list: OpenMP static scheduler



¹A. Chandramowlishwaran, S. Williams, L. Oliker, I. Lashuk, G. Biros, R. Vuduc: Optimizing and tuning the fast multipole method for state-of-the-art multicore architectures. IPDPS (2010)

- - The Fork-Join Model
 - The Data-Driven Model
 - Trade-Off: Data locality vs. idle times
 - The Fast Multipole Method (FMM)

FMM Implementations

- Fork-Join FMM
- Data-Driven FMM
- Performance Evaluation and Analysis
 - Test-bed Configuration
 - The Fork-Join FMM bottlenecks at scale
 - Comparative Analysis
 - Memory-intensive Kernel Analysis
- Conclusion and Future Work

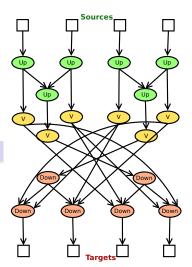
Data-Driven implementation of the FMM

Data-Driven FMMs related work:

- Based on task schedulers: Quark¹, StarPU², and others
- Overhead: task management + data dependency tracking

Proposition

- Lightweight threads: low overhead task management
- Manual synchronization: atomic counters + task nesting



Ltaief, H., Yokota, R.: Data-driven execution of fast multipole methods. (2012)

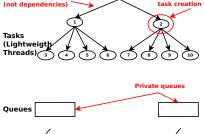
Agullo, E., Bramas, B., Coulaud, O., Darve, E., Messner, M., Takahashi, T.: Pipelining the fast multipole method over

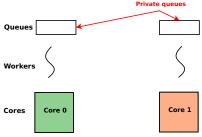
Task creation graph

TUKYU TECH Pursuing Excellence

MassiveThreads library¹

- Cilk²-like runtime: Work-first scheduling with inter-worker work-stealing
- Low overhead task management
- Private queues per worker which enables Distributed Scheduling





¹ http://code.google.com/p/massivethreads/

²http://supertech.csail.mit.edu/cilk/

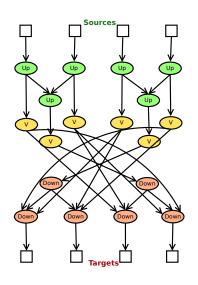
Data-Driven FMM: implementation details

Fine-grain tasks where each task:

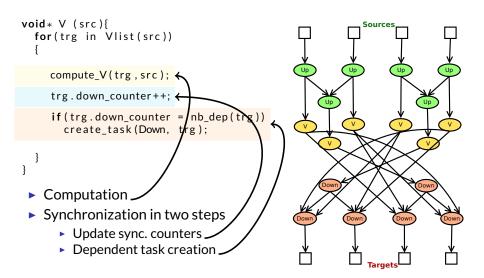
- Operates at the tree node level
- Is embedded in a lightweight thread
- May recursively create other tasks which enables subtree working-sets

A Task has two parts:

- Computation
- Synchronization in two steps
 - Update sync. counters
 - Dependent task creation



Data-Driven FMM: implementation details



- - The Fork-Join Model
 - The Data-Driven Model
 - Trade-Off: Data locality vs. idle times
 - The Fast Multipole Method (FMM)
- FMM Implementations
 - Fork-Join FMM
 - Data-Driven FMM
- Performance Evaluation and Analysis
 - Test-bed Configuration
 - The Fork-Join FMM bottlenecks at scale
 - Comparative Analysis
 - Memory-intensive Kernel Analysis
- Conclusion and Future Work

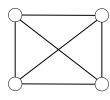
- Introduction
 - The Fork-Join Model
 - The Data-Driven Model
 - Trade-Off: Data locality vs. idle times
 - The Fast Multipole Method (FMM)
- FMM Implementations
 - Fork-Join FMM
 - Data-Driven FMM
- Performance Evaluation and Analysis
 - Test-bed Configuration
 - The Fork-Join FMM bottlenecks at scale
 - Comparative Analysis
 - Memory-intensive Kernel Analysis
- Conclusion and Future Work

Target Multi-Core Architectures

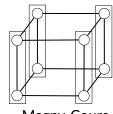
	Sandy-Bridge-EP	Nehalem-EX	Magny-Cours
Processor	Xeon E5-2620	Xeon X7550	Opteron 6172
CPU Frequency (Ghz)	2.0	2.0	2.1
#NUMA-nodes×#Cores	2×6	4×8	8×6
L3 Cache size (MB)	15	18	6
Total Memory BW (MB/s)	52590.4	68827.3	74720.4

NUMA nodes topology for each machine

Sandy-Bridge-EP



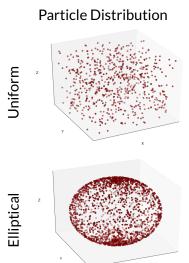
Nehalem-EX



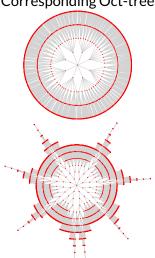
Magny-Cours

TOKYO TECH

Simulation Input¹



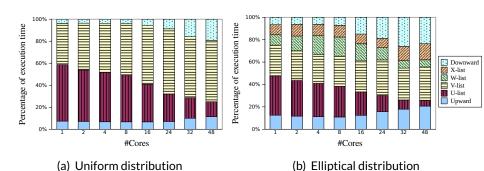
Corresponding Oct-tree



 $^{^{}m 1}$ The particle distribution and oct-tree figures were obtained with a small problem size for simplicity reasons. For the other experiments, 4 millions particles were used with 250 particles per boxe.

- - The Fork-Join Model
 - The Data-Driven Model
 - Trade-Off: Data locality vs. idle times
 - The Fast Multipole Method (FMM)
- FMM Implementations
 - Fork-Join FMM
 - Data-Driven FMM
- Performance Evaluation and Analysis
 - Test-bed Configuration
 - The Fork-Join FMM bottlenecks at scale
 - Comparative Analysis
 - Memory-intensive Kernel Analysis
- Conclusion and Future Work

The Fork-Join FMM bottlenecks at scale

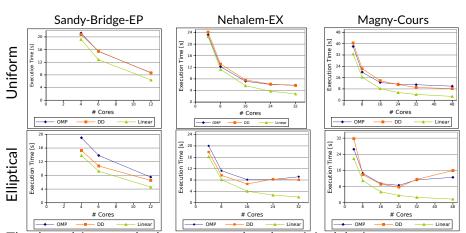


- Single thread execution: U-list and V-list are bottlenecks
- Larger scale: in addition to V-list Upward and Downward (often neglected) consume more time than U-list
- Need an optimized implementation for each stage

- Introduction
 - The Fork-Join Model
 - The Data-Driven Model
 - Trade-Off: Data locality vs. idle times
 - The Fast Multipole Method (FMM)
- FMM Implementations
 - Fork-Join FMM
 - Data-Driven FMM
- Performance Evaluation and Analysis
 - Test-bed Configuration
 - The Fork-Join FMM bottlenecks at scale
 - Comparative Analysis
 - Memory-intensive Kernel Analysis
- Conclusion and Future Work

TOKYO TECH

Comparative strong scaling



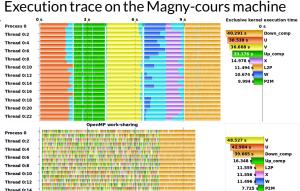
The data-driven method, as compared to the original design:

- Gives similar performance for a uniform distr.
- Scales better for the irregular distr. (except in the case of Magny-Cours at high core count, likely due to the small cache size)

Under the hood: Execution trace

Data-driven method results:

- Global synchronization eliminated
- Upward kernels faster (better data reuse)
- V-list kernels slower (likely cache contention)



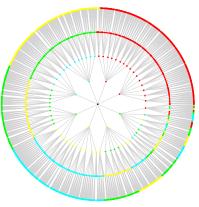
⇒ The data-driven execution does not address the memory intensive kernel bottleneck, but makes it worse!

Thread 0:16 Thread 0:18

Thread 0:20 Thread 0:22

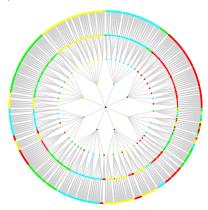
Why Upward has a better data locality?

Uniform Oct-trees, color = thread



OpenMP with a guided scheduler

⇒Potential lose of inter-level data locality



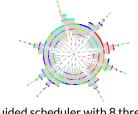
Data-Driven

⇒High inter-level data locality

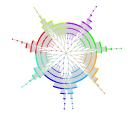
TOKYO TECH

Why Upward has a better data locality?

Irregular Oct-tree, color = thread

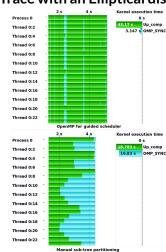


Guided scheduler with 8 threads



Sub-tree partitioning with 8 threads

Trace with an Elliptical distr.



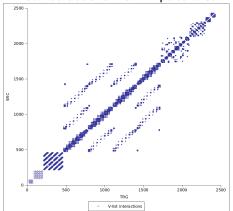
⇒ Better to keep data local and have more idle times than being dynamic and increase data movements!

- - The Fork-Join Model
 - The Data-Driven Model
 - Trade-Off: Data locality vs. idle times
 - The Fast Multipole Method (FMM)
- FMM Implementations
 - Fork-Join FMM
 - Data-Driven FMM
- Performance Evaluation and Analysis
 - Test-bed Configuration
 - The Fork-Join FMM bottlenecks at scale
 - Comparative Analysis
 - Memory-intensive Kernel Analysis
- Conclusion and Future Work

V-list source-target interactions

- Reads from a source vector and writes into a target vector
- Source-target vector elements \(\) relationship: sparse matrix
- Sparse data access pattern in non-NUMA aware fashion

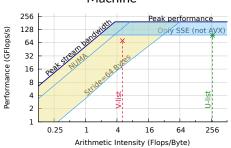
V-list interactions in an Elliptical distr.



Roofline Model Analysis

- Arithmetic intensity and GFlops: performance counters
- Bandwidth roof and ceilings: Stream benchmark¹
- V-list performance limited by the bandwidth ceilings
- Currently the main bottleneck for both parallel execution methods

Roofline plot for the Sandy-Bridge-EP Machine



 $^{^{\}perp}$ McCalpin, J.D.: Memory bandwidth and machine balance in current high performance computers. IEEE Computer Society Technical Committee on Computer Architecture TCCA Newsletter (1995)

- Introduction
 - The Fork-Join Model
 - The Data-Driven Model
 - Trade-Off: Data locality vs. idle times
 - The Fast Multipole Method (FMM)
- FMM Implementations
 - Fork-Join FMM
 - Data-Driven FMM
- Performance Evaluation and Analysis
 - Test-bed Configuration
 - The Fork-Join FMM bottlenecks at scale
 - Comparative Analysis
 - Memory-intensive Kernel Analysis
- Conclusion and Future Work

Conclusion and Future Work

- Low overhead fine-grain Data-Driven execution of FMM using distributed task scheduling
- Data-Driven showed a better trade-off between data locality and synchronization overheads
- ▶ This method made worse the memory intensive kernel execution

Future work:

- More tuning can be performed
 - Tuning the task granularity
 - Hiding V-list memory latency by the other computations
 - Blocking source data in V-list
- Enlarge the study to other irregular algorithms and many-core architectures
- Building runtimes which take into account the costs of data-movements and idle times